Introdução:
A função exponencial é uma das mais importantes para a explicação e estudos de muitos fenômenos naturais e também para o projeto de muitas máquinas, é ferramenta indispensável parafísicos, químicos, biólogos e também para engenheiros, que devem sabê-la muito bem para aplicá-la em seus trabalhos tanto nas pesquisas, caso dos físicos, químicos e biólogos, como também na engenharia, caso dos engenheiros.
Função exponencial:
video by: Mayra Vittal
Equação:
Equações exponenciais são aquelas em que a incógnita se encontra no expoente de pelo menos uma potência. A forma de resolução de uma equação exponencial permite que as funções exponenciais sejam também resolvidas de forma prática. Esse tipo de função apresenta características individuais na análise de fenômenos que crescem ou decrescem rapidamente. Elas desempenham papéis fundamentais na Matemática e nas ciências envolvidas com ela, como: Física, Química, Engenharia, Astronomia, Economia, Biologia, Psicologia entre outras.
Exemplos de equações exponenciais:
10x = 100
2x + 12 = 20
9x = 81
5x+1 = 25
Para resolvermos uma equação exponencial precisamos aplicar técnicas para igualar as bases, assim podemos dizer que os expoentes são iguais. Observe a resolução da equação exponencial a seguir:
3x = 2187 (fatorando o número 2187 temos: 37)
3x = 37
x = 7
O valor de x na equação é 7.
Exemplos de equações exponenciais:
10x = 100
2x + 12 = 20
9x = 81
5x+1 = 25
Para resolvermos uma equação exponencial precisamos aplicar técnicas para igualar as bases, assim podemos dizer que os expoentes são iguais. Observe a resolução da equação exponencial a seguir:
3x = 2187 (fatorando o número 2187 temos: 37)
3x = 37
x = 7
O valor de x na equação é 7.
video aula explicativa
Nenhum comentário:
Postar um comentário